Strojové učení a predikce údržby ve výrobě

Jak předcházet poruchám, a tím šetřit čas a peníze?

Strojové učení a umělá inteligence nám mohou pomoci sledovat a hlavně správně diagnostikovat odchylky zařízení.

No items found.

V brzkém odpoledni se montážní hala výrobce v automobilovém průmyslu náhle potýká s nečekaným problémem. Postupná ztráta tlaku v potrubí stlačeného vzduchu naznačuje vážnější problémy, které se o několik minut později vystupňují v úplnou ztrátu tlaku v potrubí, což znemožní použití všech pneumatických nástrojů. Výroba se zastaví a začíná závod s časem. Každá hodina stojí výrobce nemalé peníze. Tato nezáviděníhodná situace je způsobena poruchou vzduchového kompresoru.

Včasná údržba mohla všemu zabránit

Signály indikující tuto poruchu se objevily několik týdnů před touto událostí. Pro tuto část zařízení však nebyly použity žádné nástroje pro včasné odhalení poruchy. Možná vás napadají desítky podobných situací, které by mohly stát vaši firmu nemalé finanční a časové náklady. Jaká opatření mohla být přijata, aby se tomu zabránilo? Monitorování stavu je proces měření parametrů strojů, jako je teplota, vibrace, tlak, el. proud atd. s cílem odhalit poruchy a předcházet jim.

Vibrations
Vibrace
Sound
Zvuk
Pressure
Tlak
Temperature
Teplota
El. current
El. Aktuální
No items found.

Nejen monitorování, ale i správná diagnostika

Můžete namítnout, že ke sledování kritické infrastruktury používáte řadu senzorů. To je dobrý přístup. Ale v tak velkém množství dat je hledání různých odlehlých hodnot jako hledání jehly v kupce sena. Abyste tento problém překonali, je třeba tradiční monitorování stavu zkombinovat s datovou vědou a strojovým učením.

Co znamená anomálie

V souvislosti s monitorováním stavu musíme zmínit také anomálie. Klasickou definici anomálie uvedl Douglas Hawkins: "Anomálie je pozorování, které se natolik odchyluje od ostatních pozorování, že vzbuzuje podezření, že bylo vytvořeno jiným mechanismem."

Existuje řada diagnostických přístupů, které mohou pomoci odhalit anomálie. Některé z nich jsou uvedeny níže.

1. Rozhodovací stromy

Systematický přístup k identifikaci hlavní příčiny události pomocí diagramu stromu poruch. Potřebuje velké množství odborných znalostí v dané oblasti - Nákladné na vytvoření a údržbu.

2. Na základě pravidel

Pomocí příkazů IF/THEN aplikovaných na data rozlišujte mezi normálním provozem a poruchovým stavem. Potřebuje velké množství odborných znalostí v dané oblasti - Nákladné na vytvoření a údržbu.

3. Modelový

Techniky strojového učení využívající vyškolené modely pro běžný provoz. V případě anomálií výstup modelu indikuje odchylku. Potřebuje velké výpočetní zdroje - Vyžaduje velké množství historických dat.

No items found.

Využití technik strojového učení při detekci anomálií se v posledních letech stalo poměrně populárním.

Ne všechny známé metody ML jsou však pro tento účel vhodné. V reálném světě nám obvykle chybí dostatek dat reprezentujících stav poruchy. Z tohoto důvodu není použití metod učení s dohledem, které mapují vstup na výstup na základě mnoha příkladů v procesu učení, dobrou volbou.

Vhodnější metodou pro detekci anomálií je autoenkodér.

Autoenkodér (obvykle reprezentovaný neuronovou sítí) se učí, jak je běžná operace reprezentována ve vstupním souboru dat. Když se vyskytne anomálie, výstup autoenkodéru vykazuje velkou chybu rekonstrukce.

V současné době se monitorování stavu obvykle používá u větších a dražších strojů.

U menších aplikací se často žádná opatření nepřijímají. Tento přístup se někdy nazývá "běh do selhání". To však neznamená, že důsledky takového selhání nemusí být závažné.

Příkladem technologií, které se zaměřují na tyto případy, jsou Edge computing nebo TinyML.

Edge computing je přístup, kdy zpracování dat probíhá co nejblíže koncovému zařízení - jedná se o opak cloud computingu. Pokud edge computing běží na hardwaru s nízkou spotřebou energie (např. mikrokontroléru) a zahrnuje strojové učení, často jej nazýváme TinyML.

No items found.

Tento přístup může přinést několik klíčových výhod užitečných pro menší nebo vzdálené aplikace.

  • Může běžet v režimu offline
  • Má nižší náklady na implementaci
  • Má nízkou latenci zpracování
  • Poskytuje vyšší zabezpečení

Výrobci čipů si uvědomují, že TinyML se v nadcházejících letech stane rychle rostoucím segmentem. Proto mnozí z nich začali nabízet specializované procesory pro umělou inteligenci podporující energeticky úsporný běh ML algoritmů.

Abychom vám poskytli praktičtějšího průvodce světem TinyML, podívejme se na několik příkladů vývojových desek podporujících zpracování algoritmů ML s nízkou spotřebou energie:

max 78000 fthr

Typ vývojové desky: MAX78000FTHR
Výrobce: Maxim Integrated
Typ čipu: MAX78000
Vestavěné senzory: Kamera, Microphone

MAX78000FTHR je rychlá vývojová platforma, která pomáhá inženýrům při rychlém vývoji řešení umělé inteligence (AI) s velmi nízkou spotřebou a procesorem MAX78000 Arm Cortex-M4F s integrovaným akcelerátorem konvoluční neuronové sítě.

Google Coreal micro

Typ vývojové desky: Dev Board Micro
Výrobce: Google
Typ čipu: Coral Edge TPU
Vestavěné senzory: Kamera, Mikrofon

Coral Dev Board Micro je deska s mikrokontrolérem, vestavěnou kamerou, mikrofonem a jednotkou Coral Edge TPU, která umožňuje rychlé vytváření prototypů a nasazení vestavěných systémů s nízkou spotřebou energie a inferencí ML přímo v zařízení.

Syntiant TinyML Board front

Typ vývojové desky: TinyML board
Výrobce: Syntiant
Typ čipu: NDP100
Vestavěné senzory: IMU, mikrofon

Vývojová deska Tiny Machine Learning (TinyML) od společnosti Syntiant je ideální platformou pro vytváření hlasových aplikací, aplikací pro detekci akustických událostí (AED) a aplikací ML pro senzory s nízkou spotřebou energie.

AI Sensor board

Typ vývojové desky: AI Sensor Board
Výrobce: Eta Computer
Typ čipu: ECM3532
Vestavěné senzory: Kamera, mikrofon, světelný senzor

Deska ECM3532 AI Sensor je platforma umělé inteligence s velmi nízkou spotřebou a senzory, které mohou spouštět mnoho algoritmů: klasifikaci zvuků, vyhledávání klíčových slov, klasifikaci činností, povědomí o kontextu, detekci závad a další.

Výše uvedené platformy obsahují mikrokontrolér s nízkou spotřebou a hardwarový akcelerátor podporující inferenci konvolučních neuronových sítí s nízkou spotřebou. Může být sestavena jako čip typu "vše v jednom" (MAX78000, ECM3532) nebo rozdělena na řídicí MCU a samostatný akcelerační čip.

Všechny tyto desky již obsahují senzory, jako je kamera, mikrofon nebo akcelerometr, a samozřejmě podporují připojení dalších externích senzorů.

Díky nízké spotřebě energie je možné tyto desky napájet pouze z baterie a/nebo je kombinovat se sběrem energie. Snadno tak můžeme sestavit různé always-on chytré senzory, které najdou uplatnění i při predikci údržby. Takový hardware umožňuje snadné nasazení umělé inteligence a strojového učení v aplikacích, kde v minulosti byla hlavní překážkou cena. Spolu s internetem věcí tvoří jeden ze základních kamenů Průmyslu 4.0.

Ve společnosti Consilia se zabýváme také nasazením AI/ML v průmyslových, lékařských a dalších aplikacích. Můžeme nabídnout případové studie, návrh ověřovacího konceptu nebo přímo podpořit vývoj produktu zákazníka v této oblasti. Více o našich službách si můžete přečíst v přehledu našich služeb ve vývoji hardwaru a softwaru.

Další zajímavá témata

Co rozhoduje při návrhu PCB pro automobilový průmysl? Robustnost a pak cena.

Co je pro senior PCB designéra největší výzvou při práci pro přední světové automobilky? Zeptali jsme se Petra Horáka, konstruktéra desek plošných spojů společnosti Consilia, který se návrhem desek plošných spojů zabývá posledních dvanáct let.

„Automobilový průmysl je specifický, protože všechny vaše výrobky musí vydržet nejméně patnáct nebo dokonce dvacet let.“

Tak trochu jiný home office.

Designér PCB ze společnosti Consilia pracuje ve svém zahradním domku. Procházka od jeho rodinného domu trvá jen asi 10 sekund, ale symbolicky rozděluje jeho dva světy.

„Je to skutečná práce, jen bez každodenního dojíždění, které by mi zabralo asi tři hodiny denně.“

Základnová stanice TETRA, která jde na hranu fyzikálních limitů

Pozemní základnová stanice TETRA, na jejímž vývoji jsme pracovali v letech 2012-2017, je díky našim oscilátorům v kombinaci s vynikající energetickou účinností stále na špičce mezi produkty, které lze vyrobit pomocí současných technologií.

Potřebuji žhavit mozek. Dělat pořád stejné desky by mě nebavilo.

Petr Horák nemá rád vyšlapané cestičky.

„Mám rád projektové myšlení a zaměření na jednu konkrétní věc. Zároveň ale po nějaké době potřebuji přepnout a začít se věnovat úplně jinému segmentu. Proto velmi rád pracuji na různých typech projektů,“ říká konstruktér desek plošných spojů, který pro společnost Consilia pracuje již šestým rokem.